Tree-depth and Vertex-minors

نویسندگان

  • Petr Hlinený
  • O-joung Kwon
  • Jan Obdrzálek
  • Sebastian Ordyniak
چکیده

In a recent paper [6], Kwon and Oum claim that every graph of bounded rank-width is a pivot-minor of a graph of bounded tree-width (while the converse has been known true already before). We study the analogous questions for “depth” parameters of graphs, namely for the tree-depth and related new shrub-depth. We show that shrub-depth is monotone under taking vertex-minors, and that every graph class of bounded shrub-depth can be obtained via vertex-minors of graphs of bounded tree-depth. We also consider the same questions for bipartite graphs and pivot-minors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the existence of special depth first search trees

The Depth First Search (DFS) algorithm is one of the basic techniques which is used in a very large variety of graph algorithms. Most applications of the DFS involve the construction of a depth-first spanning tree (DFS tree). In this paper, we give a complete characterization of all the graphs in which every spanning tree is a DFS tree. These graphs are called Total −DFS −Graphs. We prove that ...

متن کامل

Hypertree-depth and minors in hypergraphs

We introduce two new notions for hypergraphs, hypertree-depth and minors in hypergraphs. We characterise hypergraphs of bounded hypertree-depth by the ultramonotone robber and marshals game, by vertex-hyperrankings and by centred hypercolourings. Furthermore, we show that minors in hypergraphs are ‘well-behaved’ with respect to hypertree-depth and other hypergraph invariants, such as generalise...

متن کامل

Graphs of Small Rank-width Are Pivot-minors of Graphs of Small Tree-width

We prove that every graph of rank-width k is a pivot-minor of a graph of tree-width at most 2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors o...

متن کامل

Graphs of Small Rank-width are Pivot-minors of Graphs of Small Tree-width

We prove that every graph of rank-width k is a pivot-minor of a graph of tree-width at most 2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors o...

متن کامل

Local Tree-Width, Excluded Minors, and Approximation Algorithms

The local tree-width of a graph G = (V;E) is the function ltwG : N ! N that associates with every r 2 N the maximal tree-width of an r-neighborhood in G. Our main graph theoretic result is a decomposition theorem for graphs with excluded minors, which says that such graphs can be decomposed into trees of graphs of almost bounded local tree-width. As an application of this theorem, we show that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2016